比特派钱包苹果版下载安装|示波器的工作原理及使用误差分析
比特派钱包苹果版下载安装|示波器的工作原理及使用误差分析
示波器的原理和使用实验报告误差分析 - 知乎
示波器的原理和使用实验报告误差分析 - 知乎切换模式写文章登录/注册示波器的原理和使用实验报告误差分析隽业TPU气囊厂家隽业塑胶制品(广东)有限公司 员工{示波器使用的原理}和使用}连接有网友分享的不了,但是使用的报告实验、误差、案例分析等综合数据分析还少,在我们科学测量领域中,工程师、电工师傅,家电、电气维修的,电子科技领域的大佬们,都是离不开示波器,示波器具有波形触发、存储、显示、测量、波形数据分析处理功能,也是电子测量科学数据必备工具,所以今天就分享示波器实验报告、误差等案例。示波器与声速测量实验报告案例声速测量的实验需要大量的数据分析(1)示波器使用无需进行数据分析,具体的思考问题见后面的具体实验报告(2)声速测量的逐差法计算三种不同方法的声速,列表采用四行七列,如下图:示波器的原理和使用实验报告误差分析三种不同的方法都采用上述方式计算,其中,声速的公式略有不同:振幅法:v=1/3(△x)·f行波比较法和李萨如图形法:v=1/6(△x)·f(3)推导和计算不确定度时采用上图的方法,其中△仪忽略不计;由此推导出不确定度的公式带入数据计算。此时注意不确定度的有效数字和保留的位数应符合要求,还要用标准的大括号形式写出(4)求r时,利用讲义中提供的公式,变形出r=XXX的公式,其中R=8.314J/(mol·k)为摩尔气体常数,M=0.029kg/mol为空气分子的摩尔质量,T为绝对温度,应将测的的摄氏度转化开氏度,1°C=274.15开氏度(K),带入计算结果应与理论值1.402相似具体实验报表示波器的原理和使用实验报告误差分析示波器的原理和使用实验报告误差分析示波器的原理和使用实验报告误差分析示波器实验报告误差分析1. 两台信号发生器不协调。2.桌面造成的震动影响3.示波器显示的荧光线较粗,取电压值的荧光线间宽度不准,使电压值不准。4.取正弦周期不准。机器系统存在系统误差,5.fy选取时上下跳动,可能取值不准。以上示波器实验报告案例测量的是风速度,在实验的过程中需要大量的数据分析与误差分析,存在不确定,不准确的风险值,所以这里个案例仅提供大家参考,有需要问答的请咨询:零式未来科技。发布于 2022-07-06 11:23误差示波器实验报告赞同 461 条评论分享喜欢收藏申请
示波器的使用误差分析-电子工程世界
示波器的使用误差分析-电子工程世界
|首页|
电子技术|
电子产品应用|
电子头条|
社区|
论坛
测评
博客
电子技术视频|
下载|
参考设计|
Datasheet|
活动|
技术直播|
datasheet
datasheet
文章
搜索
|首页|
电子技术|
电子产品应用|
电子头条|
论坛|
大学堂|
下载|
参考设计|
Datasheet|
活动|
技术直播|
datasheet
datasheet
文章
搜索
测试测量
测试测量>信号源与示波器> 示波器的使用误差分析
示波器的使用误差分析
发布者:tau29最新更新时间:2019-12-24
来源: elecfans关键字:示波器 使用误差 精准度
手机看文章
扫描二维码随时随地手机看文章
收藏
评论
分享到
微博
微信
示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 示波器的使用误差分析 示波器显示的曲线数据,一般包括频率、幅值、相位关系,分析时可以分别展开讨论。讨论又可以从以下几方面来考虑:首先是实验方法上,是不是存在缺陷,使得结果必然存在一个误差,比如设计电路不够合理,使输出幅值不够,或者相位超前或滞后;另外从实验过程看,由于读取数据、记录数据等,可能造成的人为的或偶然误差;还有就是示波器的本身可能存在一些跟踪信号能力不够精确,导致存在系统误差等。 系统误差可以通过改进实验设备、完善实验方法来减小,但是几乎不可能消除;偶然误差可以通过多次重复实验求均值的方法来减小,但是也不可能完全消除。事实上,只要是在误差允许的范围内,数据就是有效的,实验就是可靠的。 系统误差 首先示波器本身就有比较大的数据误差,因为示波器是用来看波形的,只可以用于定性测试,数据定量测试误差比较大。 信号完整性与示波器及其输入有关。大多数DSO的增益不准确度是1%至5%,这是对直流来说的。对于高频的绝对增益很少有所规定,但是示波器的整个高斯型滚降特性保证瞬态响应是良好的。DSO显示的相对增益准确度受前置放大器、衰减器和模傲转换器(ADC)的影响,除非采用模拟示波器的静电偏转或阴极射线示波管,准确度不受显示系统的影响。模拟示波器由于偏转放大器和阴极射线示波管有误差引入,总的增益误差达到2%至3%。 主要有以下几种: 1、机器系统存在系统误差; 2、采样率,采样率不够,无法正确还原波形; 3、示波器图像有厚度,使结果有误差; 4、示波器带宽,带宽不够,高频信号进不来,自然会产生很大误差; 5、示波器记录长度,记录长度不够无法显示完整信号; 6、探头精度; 7、示波器垂直精度,也就是垂直位数不够,幅值测量精度也就会有误差; 8、示波器通道阻抗,如果阻抗不匹配,幅值测量会有很大误差; 9、两台信号发生器不协调。 人为(偶然)误差 测试波形时,最常见造成示波器测试波形不对是因为仪器没有接地造成的。除此之外还有以下几种因素: 1、观察时未使振幅达到最大就进行读数; 2、桌面振动造成的影响; 3、示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准; 4、取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准; 5、fy选取时上下跳动,可能取值不准; 6、示波器触发设置不正确同样会产生误差; 7、示波器中探头的衰减倍数设置如果不正确,同样也会产生误差; 8、探头接地位置不正确或者地线过长都会引起测量值的误差。 人为误差可以通过改进方式方法来消除,偶然误差则可以通过多次重复试验的数据分析来减少。 总结 经过以上误差分析,我们可以通过选择精度高、采集率高、带宽足够的示波器和设置合适的接地方式以及正确的读数方法来减少误差,提高实验的精准度。
关键字:示波器 使用误差 精准度
引用地址:示波器的使用误差分析
上一篇:关于示波器的使用方法分析介绍
下一篇:一根烟的时间让你读懂示波器的工作原理
推荐阅读最新更新时间:2024-03-16 15:39
泰克示波器在电动后视镜转向电流测试的应用
测试需求: 某客户是做电动后视镜的,需要检测电动后视镜转向的正反电流,一般电流在十几安培左右的脉冲电流,峰峰值电流大概在两倍多一点,需要测试方案能够有限测出正反偏转的电流是否符合正常标准,从而去判断电动后视镜的优劣。另外在转动玻璃的电动控制中,需要测试50mA左右的偏向电流,需要电流能够有效测出整个偏向的电流上升情况,工程师会根据测试数据以便进行进一步的优化设计。加上此次的示波器需要在基础示波器上进行,考虑到实际的情况做出一套测试方案。客户希望能在有限的预算之内能达到测试目的。 汽车后视镜折叠功能是指汽车两侧的后视镜在必要时可以折叠收缩起来。车辆在行车过程中难免发生一些意外事故,后视镜作为安装在车辆上宽度最宽的零部件,在造成相
[测试测量]
Rohde & Schwarz台式整体解决方案套装e络盟开售
安富利旗下全球电子元器件产品与解决方案分销商e络盟宣布限时特惠供应Rohde & Schwarz高品质精密测试与测量设备,折扣高达50%。此次独家促销活动覆盖Rohde & Schwarz新上市产品和经典款产品。对于追求高性价比的设计工程师、制造商和教育机构以及寻求高质量示波器、功率和频谱分析仪及电源的研究机构而言,Rohde & Schwarz促销套装可谓不二之选。 此次促销套装还附赠通常需额外付费的扩展板和升级包。也就是说,客户只要购买促销套装,就无需再购置其他组件和软件升级包;即便未来测试需求改变,也能轻松应对。 Rohde & Schwarz测试设备优惠套装是专为e络盟全球客户而配置,以满足当今工
[测试测量]
简便的示波器附件能产生多通道显示
在电路研发和测试中,往往需要显示的通道比现有示波器所提供的要多,1个简单的解决方案是触发几个并联的示波器。然而,单个示波器是更简单的,并允许通道间进行更精确定时测量。另外,两个输入脉冲相减,可直接观察它们的时间差。 图1所示的附件电路可转换单迹(或双迹)示波器的1个通道工作为双迹单元,具有通常的Add,Invert、Chop和alternate模式。此电路很容易扩展,用MAX4310多路转换器可提供4或8通道。 AD8055(或AD8056)输入缓冲放大器具有10MΩ输入阻抗(并联2pF),可使电路的输入阻抗达到1MΩ(并联30pF)。可以调节此电容使其匹配示波器本身的输入电容,所以可以采用低电容探头(在输入A
[测试测量]
HMO2024示波器的特点与优势分析
HMO2024示波器具有200MHz、350MHz、500MHz和1GHz带宽,可提供高达5Gs/s采样率和20M样点的存储深度。因此,即使是针对长信号序列,它也可以精确显示信号,更深入分析细节,提供更高时间分辨率。 特点与优势: • 信号分析:快速获得测量结果 一键获得信号细节: QuickMeas快速测量功能 详细测量结果:强大的光标功能 聚焦细节:缩放与标记 快速测量:开机、测量、完成 • 调试:所有内容一目了然 设置仅需数秒:模板测试 集成:FFT频谱分析 精确:丰富的触发能力 • 操作:智能理念 方便识别:颜色编码控件 快速选择:扁平化菜单 容错:撤销/恢复功能 看得更多:高分辨率XGA显示 两个显示屏:虚拟屏幕
[测试测量]
示波器探头上的10X是什么意思?
示波器探头上的10X是什么意思? 表示对测量信号衰减的倍数,用来提高量程,如果探头为10 ,此时测试电压选择在1V/格,那么实际读数应该是10V/格。
[测试测量]
数字示波器的垂直分辨率
垂直分辨率概念 用数字示波器测量模拟信号第一步就是用ADC(模数转换器)把探棒接收到的模拟信号转换成数字信号,ADC数模转换芯片的分辨率直接决定了示波器垂直方向上的采样精度。比如ADC是8位,那么垂直方向上的信号可以被切分成00000000~11111111一共2的8次方,256段。模数转换器的垂直分辨率,就是数字示波器的垂直分辨率,代表示波器将输入电压转换为数字值的精确程度。 数字示波器所显示的垂直分别率由什么决定 优先级从高到低 1.前端ADC的分辨率 2.显示屏分辨率:它决定了经过处理的信号,有多少可以被显示出来。比如ADC虽然可以在垂直方向上显示256段,但是可能显示屏的分辨率垂直只有240个像素点,那么有一部分点会被
[测试测量]
ZDS2022示波器百集实操特辑之26:快速捕获异常
快速捕获异常波形无疑是每位示波器用户关心的问题,ZDS2022可助您轻松捕获它,你知道几种方法呢? 图1 选择波形触发方式 第一种方法是利用ZDS2022示波器强大的触发功能,可选取11种基础触发中的某种类型(如图1所示),如脉宽触发、欠幅或超幅触发等。同时,还可以利用21种协议触发对协议信号波形进行检查,确认其是否存在异常,如UART、CAN等。 图2 模板触发界面效果 而且,ZDS2022示波器触发功能还包括万能模板触发(如图2所示),先一键【Persist】,打开无限余辉功能,在高刷新率下记录所有异常信号,然后开启模板碰触功能,通过调节模板的位置和大小,使模板框住自己感兴趣的异常波形轨迹,生成模板,一键【Clea
[测试测量]
【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事
构建测试系统时,可能需要测量多个信号,此时仅依靠一个示波器的可用通道可能无法完全捕获所有信号。要增加测试系统中的示波器通道数量,常见的方法是将多个示波器组合在一起。多通道测量适用于各种场景,例如捕获复杂的粒子物理实验数据、测量大量电源轨以及分析三相电源转换器。 这些测量涵盖的任务包括检测电源对串行总线的串扰、分析射频干扰以及验证传入的输入/输出信号的完整性。在多通道应用或测量场景中,保持通道之间的精确同步对于准确分析整个被测系统内的时序关系至关重要。 图 1: TekScope PC 分析软件 当需要同步捕获许多信号时,实现示波器同步有多种办法。我们来说说使用 5 和 6 系列 B MSO 示波器和TekScope
[测试测量]
热门资源推荐
热门放大器推荐
更多
控制系统设计指南 (埃利斯)
深度学习:从基础到实践 (安德鲁·格拉斯纳 (Andrew Glassner))
传感器与检测技术(第4版) (徐科军等)
机器学习从原理到应用 (卿来云 黄庆明)
FreeRTOS源码详解与应用开发:基于STM32 超小封装,高导通电流,适合高频应用的光继电器TLP3475W 射频电路工程设计 RISC-V架构与嵌入式开发快速入门
CLC420AJE-TR13
5539/BCA
SMP08FS-REEL
NJU7071M(TE4)
LTC2064HDD#TRPBF
AD744SH/883B
OP413EY
LM1514J/883B
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
发布文章
推荐内容
如何利用现代示波器实现准确测量(二)
研讨会 : Tektronix 嵌入式系统调试及混合信号系统验证测试中示波器的使用
Tektronix 用混合信号示波器探索总线的秘密
泰克MDO3000混合域示波器的测量应用
玩转示波器,2017年是德科技干货教程汇总
【电路】无直流误差的低通滤波器电路
【电路】放大器中射频干扰整流误差电路盘点
【电路】传感器非线性误差的补偿电路
【电路】误差放大器等效电路图
【电路】暗误差(偏置)调节电路
【电路】采用集成心路的电阻误差测量仪电路
热门活动换一批更多
■点评有礼:看看国产芯榜的9款电源芯片,你知多少?欢迎来评论来推荐~
■【60块开发板!30份好礼!】STM32直播:多款新品发布、成功案例分享、解决方案解读
■新思科技技术日:硬件加速验证解决方案专场 火热报名中!
■有奖直播|英飞凌OBC解决方案深度详解 报名中!
■MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~
■汽车VCU知识问答第一站:了解VCU系统框图和功能清单
■有奖直播 | Keysight HDMI 2.1b 测试技术研讨会
最新测试测量文章
管窥校准沟通之道, 有效沟通是成功校准的基础泰克深知,校准服务提供商与客户沟通的准确性和一致性对于校准过程的成功至关重要。我最近有幸与 A2LA 的 Stephanie Morin 在一场网络 ...
聚集英才 共绘未来 | 普源精电(RIGOL)西部总部落户西安,西安研发中心隆重开业2024年3月11日,普源精电科技股份有限公司西安研发中心正式落户西安“双中心”核心承载区丝路科学城集成电路创新中心(西安电子谷核心区) ...
是德科技联合 ETS Lindgren 推出创新 NB-NTN OTA 测试解决方案该联合解决方案可用于评测支持 NB-NTN 的设备在空口条件下的发射机 接收机性能为加快移动生态系统的非地面网络部署进程赋能是德科技和 E ...
【泰克应用分享】让电池测试变得简单泰克 Keithley 推出的升级版KickStart 电池模拟器应用程序支持电池测试、电池仿真、电池模拟和电池建模等功能,是您测试各类可充电电池的 ...
是德科技首次在中国颁发行业就绪认证,助力香港中文大学(深圳)加强工程教育是德科技与香港中文大学(深圳)合作开展了一门针对射频微波教学的课程,旨在提高学习成效,加深理论与实践的结合,强化教学过程中的动手实 ...
做信号链,你需要了解的高速信号知识(一)
如何通过接地摇表测量接地电阻?
FLIR推出声学成像仪,助力快速定位气体泄漏与机械故障
【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事
更多精选电路图
24V降为12V开关型电源变换器
用MC1455PIG制作自动循环发光二极管电路
18W音频放大器的电路图
易制的LM386集成电路信号寻迹器电路
使用晶体管TIP31的直流电机控制器电路
短波AM发射器电路设计图
换一换
更多
相关热搜器件
LXK3301AL003
BT137-600G0TQ
RSX101MM-30TFTR
AS2431ABLPN
C222G102K5CJ5CR
2SA1094Y
2200RGH1002224B
2200GAF3009A3EB
232-103-H7ZL20-24SD-03
ATS-17E-04-C1-R0
240-383JP17-35PSCGNN
ELM17411GA-S
95615-110
ICTE36C
CBT-30M
EXM-A01-19-32SC-05
76020T-17E-99JD
1812Y0630154KET
72324-112HLF
MS27497T12B8PB
HSB-M4-07DC262W
DSO531SRCB-0.700MHZ
530AA443M000DG
ACBMP8W8S0S8W8M0S/AA
LDIR-10H-T-B
IRKN162-12EKPBF
883/4510BF
DC051E334PA5510
MHAS-084-ZMGG-11A
D38999/26WF18SB
RF316-02SJ3-01SB3-1000
T83D686K020UBCS
SP2-016-H22/1-95/11B
GMPM4-G111RT020J1-460S
JI727-330D0
7103L40Y3W3QI2
2225SC822KAZ3A
CDR36BX102YJURAP
C480NS6200PF2%500VB
7040237.40.05
WEBCR2110MYG-1-D
WBDDQSC-A-00-2462-B-B
5962-8957701YX
SCBRF-F3ARDAP-SA
M3023-110116-035BG
S1505CA1210BEB-TR
RC1206AD196KFKNW
SIP-4701-01-1010BF
D55342K07B121ECTFV
852517G14B12PNK001
更多热门文章
艾尼克斯扩大其位于中国苏州的制造工厂规模
通锐微电子显示装置校正方案 解决了OLED“烧屏”问题
CEVA SensPro™ 传感器中枢DSP 获得 ASIL B(随机) 和 ASIL D(系统)汽车安全合规认证
ATmega8 定时器 中断 外部中断 程序
iTOP-4412开发板-使用PartitionManager分区之后tf卡无法识别
电磁流量计初始暗码
手持示波器“视波表”的方案原理
深圳华强北电子市场紧急关闭,商户连夜取货
福特车主终于等来苹果黑科技
更多每日新闻
汽车IGBT“项”前冲,江苏、浙江、广东新增3个项目
面向千行百业,赋能AI应用型人才,英特尔加持校企协同的AI教育解决方案
英特尔打造软件定义汽车,为行业提供卓越性能和超高效率
Bourns 最新微型可恢复热熔断 (TCO) 装置组件上市
e络盟推出设计、构建、维护中心,全面革新产品生命周期服务与支持体系
日系车败走中国市场:丰田、日产、本田相继大幅减产,三菱已退出
管窥校准沟通之道, 有效沟通是成功校准的基础
国内首发 | 曦华科技推出首款车规级电容触控型32位MCU
环旭电子推出创新型150KW功率模组,适用于电动车驱动逆变器
宁德时代重磅签约:长寿命电池
更多往期活动
借助 TI 工业应用参考设计,加快产品上市时间
泰克多媒体总线系列专题之三 《USB3.1接口测试》下载有礼
【芯币兑换】活动一:用社区芯币兑换51开发板PCB板!
[有奖转发]Vishay新能源、航天/军工解决方案
挑战极限,你敢看吗?下载文档+观看视频,了解航空和政府应用解决方案
2021 Digi‑Key KOL 视频系列:新型智能曝光算法在人脸识别中的应用
畅想十二月,设计我自己的EEWORLD!
看视频赢京东卡 | 泰享实测之水哥秘籍第三期
厂商技术中心
TI 技术论坛
TI 在线培训
Qorvo 射频技术研习社
随便看看
PIC单片机用IIC总线读写片外EEPROM????
msp430 USART模块-双向串口通信,接受长度为8的字符串,再发送回PC机
有没有什么型号的MCU集成了多个放大器和比较器呢?
在DXP中的信号完整性分析
浅谈电视机各式保护电路
FPGA Verilog一个基础问题
调试器不能连接到STM32的问题与解决办法 (转载)
51单片机相关功能模块学习
滤波电容如何选择
sprintf打印字符串,指定不了输出的位数??
About Us
关于我们
客户服务
联系方式
器件索引
网站地图
最新更新
手机版
站点相关:
信号源与示波器
分析仪
通信与网络
视频测试
虚拟仪器
高速串行测试
嵌入式系统
视频教程
其他技术
综合资讯
词云:
1 2 3 4 5 6 7 8 9 10
北京市海淀区中关村大街18号B座15层1530室
电话:(010)82350740
邮编:100190
电子工程世界版权所有
京B2-20211791
京ICP备10001474号-1
电信业务审批[2006]字第258号函
京公网安备 11010802033920号
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
百度知道 - 信息提示
百度知道 - 信息提示
百度首页
商城
注册
登录
网页
资讯
视频
图片
知道
文库
贴吧采购
地图更多
搜索答案
我要提问
百度知道>提示信息
知道宝贝找不到问题了>_
该问题可能已经失效。返回首页
15秒以后自动返回
帮助
| 意见反馈
| 投诉举报
京ICP证030173号-1 京网文【2023】1034-029号 ©2024Baidu 使用百度前必读 | 知道协议
示波器的原理和使用方法 - 知乎
示波器的原理和使用方法 - 知乎切换模式写文章登录/注册示波器的原理和使用方法泰勤科技致力于测试测量领域的综合服务商在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用 表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本 章从使用的角度介绍一下示波器的原理和使用方法。1、示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。1.1、示波管阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。图1示波管的内部结构和供电图示1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余 辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很 细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作 用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴 极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与 阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。电子束从 阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、 A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调 节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。3.偏转系统偏转系统控制电子射线方向,使荧 光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板 在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。4.示波管的电源为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴 极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前 加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。1.2示波器的基本组成从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变 化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。图2示波器基本组成框图被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足 够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负) 极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏 之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系 统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。2、示波器使用本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。2.1荧光屏荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。2.2示波管和电源系统1.电源(Power)示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。2.辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。3.聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。4.标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。2.3垂直偏转因数和水平偏转因数1.垂直偏转因数选择(VOLTS/DIV)和微调在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。2.时基选择(TIME/DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于2μS×(1/10)=0.2μSTDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。2.4输入通道和输入耦合选择1.输入通道选择输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅 显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选 择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1” 位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器, 从荧光屏上读出的电压值乘以10才是信号的实际电压值。2.输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、 直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含 有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。2.5触发第一节指出,被测信号从 Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生 重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接 影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。1.触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。2.触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。低 频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电 路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。3.触发电平(Level)和触发极性(Slope)触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时 针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产 生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。2.6扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的, 真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。数字示波器使用必须注意问题前言数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。区分模拟带宽和数字实时带宽带宽是最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随 机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一 般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声 称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指 其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会 给测量带来意想不到的误差。有关采样速率采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。1.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现 象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于 一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是, 说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不 会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生:·调整扫速;·采用自动设置(Autoset);·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。·如果示波器有InstaVu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。2.采样速率与t/div的关系每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出:fs=N/(t/div)N为每格采样点当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。下面是TDS520B的一组扫速与采样速率的数据:表1扫速与采样速率t/div(ns)1252550100200fs(GS/s)502510210.50.25综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。数字示波器的上升时间在模拟示波器中,上升时间是的一项极其重要的指标。而在数字示波器中,上升时间甚至都不作为指标明确给出。由于数字示波器测量方法的原因,以致于自动 测量出的上升时间不仅与采样点的位置相关,如图2中a表示上升沿恰好落在两采样点中间,这时上升时间为数字化间隔的0.8倍。图2中的b的上升沿的中部有 一采样点,则同样的波形,上升时间为数字化间隔的1.6倍。另外,上升时间还与扫速有关,下面是TDS520B测量同一波形时的一组扫速与上升时间的数 据:表2扫速与上升时间t/div(ms)502010521tr(μs)800320160803216由上面这组数据可以看 出,虽然波形的上升时间是一个定值,而用数字示波器测量出来的结果却因为扫速不同而相差甚远。模拟示波器的上升时间与扫速无关,而数字示波器的上升时间不 仅与扫速有关,还与采样点的位置有关,使用数字示波器时,我们不能象用模拟示波器那样,根据测出的时间来反推出信号的上升时间。广东泰测电子有限公司(简称:广东泰测)成立于2021年,是深圳市泰勤科技有限公司的子公司,公司立身于测试测量仪器行、工业与制造行业,与多家国内外业界著名仪器厂商有着长远而稳固的战略合作关系,公司成立至今,紧跟世界工业与制造业发展趋势,为广大的客户提供了多元化的服务,产品用于研发、生产、测试、检测、高校实验室等,涉及领域有: 5G、人工智能、新基建、智能制造、智慧城市、光伏、新能源、电源、电池、半导体、储能等引领未来科技的新行业,在多个领域提供了具有竞争力的综合性测试服务和解决方案,满足客户各类需求。主营:数字示波器、探头、交直流电源、交直流电子负载、万用表、数据采集器、功率分析仪、信号发生器、热像仪、示波记录仪、安规测试仪等产品代理品牌:RIGOL普源精电,ITECH艾德克斯,CYBERTK知用电子,EEC华仪,FLUKE福禄克,KHC北京科环,Tektronix泰克,KEITHLEY吉时利,KEYSIGHT是德科技,HIOKL日置等品牌厂家编辑于 2022-04-15 14:28数字系统设计数字信号示波器赞同 13添加评论分享喜欢收藏申请
示波器的使用方法 - 示波器的基本实验 - 知乎
示波器的使用方法 - 示波器的基本实验 - 知乎切换模式写文章登录/注册示波器的使用方法 - 示波器的基本实验是德科技 Keysight Technologies已认证账号本文适用于在校电子工程和物理专业学生的示波器实验室指南和教程。本示波器实验指南和教程适用于随教育培训套件 (DSOXEDK) 一同许可的 Keysight InfiniiVision 2000, 3000 X 系列示波器和4000 X 系列示波器。基本示波器和波形发生器测量实验示波器基本实验 #1:对正弦波执行测量示波器基本实验 #2:了解示波器触发的基本知识 示波器基本实验 #3:触发噪声信号示波器基本实验#4:记录和保存示波器测试结果示波器基本实验 #5:补偿 10:1 无源探头示波器基本实验 #6:使用内置函数发生器生成波形示波器入门使用方法 - 什么是示波器?对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。当您最终从电子工程学校毕业,进入电子行业工作时,您可能会发现在测试、验证和调试设计方面,使用示波器这一测量工具的频率要比任何其他仪器都要高得多。即使是在特定大学里学习电子工程或物理专业的课程期间,示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。遗憾的是,许多学生永远都不能完全掌握如何使用示波器。他们的使用模式通常是某个随机旋钮和按钮,直到示波器显示屏上奇幻般出现一个与他们要寻找的效果接近的图片。但愿在完成这一系列简短的实验后,您会对示波器是什么以及如何更有效地使用它有了更好的了解。那么,什么是示波器?示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。您的教授在其学生时代使用的这类示波器可能就是完全基于模拟技术的示波器。这些采用早期技术的示波器通常称为模拟示波器,具有限定的带宽,不执行任何种类的自动测量,而且要求输入信号是重复的 (连续出现并重复输入信号)。您将在这一系列实验中 (可能会贯穿大学及研究生学习的其余时间)使用的这类示波器称为数字存储示波器,有时仅称为 DSO。或者,您可以使用混合信号示波器,该示波器将传统的 DSO 测量模拟与逻辑分析测量相结合,有时称为 MSO。请注意,所有的数字实时示波器基本上只有DSO和MSO之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的 DSO 和 MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能,借助这些功能您可以比您的教授在学生时代更快速、更准确地体现设计和学生实验的特征。快速了解如何使用示波器以及示波器有何功能的最佳方式是首先了解示波器上的一些最重要的控件,然后只需开始使用其中一个测量一些基本的信号,如正弦波。获得 DSOXEDK 教育培训套件选项的许可后,Keysight TechnologiesInfiniiVision 2000 和 3000 X 系列示波器(在图 1 中显示)便会产生模拟和数字培训信号。我们将在这一系列简短实验中使用其中许多信号,帮助您了解如何使用示波器这一最重要的电子信号测量仪器。Keysight InfiniiVision 2000/3000 X 系列示波器执行示波器测量时的第一项任务通常是将示波器探头连接在测试设备与示波器的输入 BNC 接口之间。示波器探头在测试点提供相对较高的输入阻抗端子功能(高电阻,低电容)。高阻抗连接对于将测量仪器与测试电路分隔开来非常重要,因为我们不希望示波器及其探头改变测试信号的特征。有多种不同种类的示波器探头可用于特定类型的测量,但是您今天将使用的探头是最常用的探头类型,称为 10:1 无源电压探头,如图 2 所示。“无源”仅意味着此类型的探头不包括任何“有源”组件,如晶体管和放大器。“10:1”意味着此探头将以 10 为常量衰减示波器输入中接收的输入信号。图2. 无源 10:1 电压探头使用标准的 10:1 无源探头时,应在信号测试点与地面之间执行所有的示波器测量。换句话说,您必须 将探头的接地夹接地。若被测点是浮地的,我们不建议使用此类探头直接测量电路中组件之间的相对电压。如果需要测量未接地组件内的电压,则在使用示波器的两条通道相对于地面测量组件两端的信号时,可以使用示波器的减法数学函数(在实验 #13 期间介绍),或者可以使用特殊的差分有源探头。另外还应注意,绝不应使示波器的部件成为被测电路功能结构的一部分。图 3 显示了使用示波器的默认 1 MΩ 输入选择 (这是使用此类探头时必需的)连接到示波器时的 10:1 无源探头的电子模型。请注意,许多较高带宽的示波器还具有用户可选择的 50 Ω 输入端子选择,这种选择通常用于有源探头端子和/或使用 50 Ω BNC 同轴电缆从 50 Ω 电源直接输入信号时。图3. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图尽管无源探头和示波器的电子模型包括固有/寄生电容 (非设计)以及特意设计的补偿电容网络,但是现在让我们忽略这些电容元件,并分析低频或直流电输入条件下此探头/示波器系统的理想信号行为。从探头/示波器电子模型中删除所有的电容组件后,只剩下与示波器的 1 MΩ 输入阻抗串联的 9 MΩ 探头端部电阻。探头端部的净输入电阻则为 10 MΩ。使用欧姆定律,您会发现示波器输入处接收的电压电平将为探头端部处电压电平的 1/10 (Vscope = Vprobe x (1 MΩ/10 MΩ))。这意味着,使用 10:1 无源探头时,示波器测量系统的动态范围已被扩展。换句话说,与使用 1:1 探头测量的信号相比,您测量的信号幅度可高出 10 倍。此外,示波器测量系统 (探头 + 示波器)的输入阻抗将从 1 MΩ 增加到 10 MΩ。这是好事,因为较低的输入阻抗可以负载测试设备 (DUT),但是会更改 DUT 内的实际电压电平 (这不是好事)。尽管净输入阻抗 10 MΩ 确实很大,但是您必须记住,必须要考虑到与探测设备的抗阻相关的这一负载阻抗量。例如,具有 100 MΩ 反馈电阻器的简单运算放大器电路可能会在示波器上提供一些错误的读数。如果您在电路实验中使用 Keysight 3000 X 系列示波器,则此示波器将自动检测并将探头衰减常数设置为 10:1。如果您使用 Keysight 2000 X 系列示波器,则必须手动输入探头衰减常数 (10:1)。示波器知道探头衰减常数后 (自动检测或手动输入),会提供所有垂直设置的补偿读数,以便将所有的电压测量引用到探头端部的无衰减输入信号。例如,如果您探测 10 Vpp 信号,则在示波器输入处收到的信号实际上仅为 1 Vpp。但是,由于示波器知道您使用的是 10:1 分压器探头,因此示波器在执行电压测量时将报告看到了 10 Vpp 的信号。到达实验 #5 (补偿您的 10:1 无源探头)时,我们将回过头研究此无源探头模型,并说明电容组件。探头/示波器电子模型中的这些元件将影响组合示波器和探测系统的动态/交流电性能。示波器前面板首先让我们了解示波器上最重要的控件/旋钮。在示波器顶部附近是“水平”控件,如图 4 所示。较大的旋钮用于设置水平刻度调整 (秒/格)。此控件可用于设置显示波形的 X 轴刻度调整。一个水平“格”为每个垂直网格线之间的 Δ-time。如果要查看更快的波形 (频率较高的信号),则将水平刻度调整设置为较小的 sec/div 值。如果要查看更慢的波形 (频率较慢的信号),则通常将水平刻度调整设为较高的 sec/div 设置。“水平”部分中较小的旋钮可用于设置波形的水平部分。换句话说,使用此控件可以左右移动波形的水平位置。示波器的水平控件(s/div 和位置)通常称为示波器的主要“时基”控件。值得注意的是,旋钮都是可以按下的。用来调整时基设置的旋钮按下是在精调与粗调之间切换。用来控制水平位移的旋钮按下可以迅速将波形的偏移归零。图4. 示波器水平 (X 轴)控件示波器底部附近垂直部分(在输入 BNC 的正上方)中的控件/旋钮(请参考图 5)可用于设置示波器的垂直刻度调整。如果使用双通道示波器,则有两对垂直刻度调整控件。如果使用四通道示波器,则有四对垂直刻度调整控件。垂直部分中每个输入通道的较大旋钮可用于设置垂直刻度调整系数 (伏/格)。这是波形的 Y 轴图形刻度调整。一个垂直“格”为每个水平网格线之间的 Δ-volts。如果要查看相对较大的信号 (高峰峰值电压),则通常将 Volts/div 设置设为相对高的值。如果查看小的输入信号电平,则应将 Volts/div 设置设为相对低的值。垂直部分中每个通道的较小控件/旋钮是位置/偏移控件。您可以使用此旋钮在屏幕上上下移动波形。垂直调整旋钮也是可以按下的。用来调整通道垂直分辨率的旋钮按下是在精调与粗调之间切换。用来控制垂直位移的旋钮按下可以迅速将波形的垂直偏移归零。图5. 示波器垂直 (Y 轴)控件另一个非常重要的示波器设置变量是触发电平控件/旋钮,如图 6 所示。此控制旋钮位于示波器前面板中心附近,标记为触发的部分下方。触发可能是示波器被了解得最少的方面,但该功能是示波器中您应了解的最重要功能之一。在进入实践实验时,我们将更为详细地介绍示波器触发。图6. 示波器触发电平控件阅读下面实验中的说明时,任何时候都会看到一个用方括号括住的粗体字,如 [ 帮助],这是位于指示波器右侧的一个前面板键 (或按钮)。按下该键时,具有与该特定前面板功能关联的“软键”选择的唯一菜单将被激活。“软键”是位于示波器显示屏下方的 6 个键/按钮。根据激活的菜单,这些键的功能会发生变化。现在找到图 7 中显示的 Entry 控制旋钮。这是示波器显示屏右侧位于黑色阴影区域中的旋钮。我们会非常频繁地使用此旋钮来更改一系列不具备专用前面板控件的设置变量和选择。选择软键时,任何时候您都会看到绿色的弯曲箭头 ,这指示 Entry 旋钮可用于控制此变量。请注意,此旋钮还用于设置波形亮度级别。让我们开始使用示波器进行测量!图7. 示波器通用 Entry 控件示波器基本实验 #1:对正弦波执行测量在第一个实验中,您将学习如何使用示波器的水平和垂直刻度调整控件来正确设置示波器,从而显示重复正弦波。此外,还将学习如何对此信号执行一些简单的电压和定时测量。1 将一个示波器探头连接到通道 1 输入 BNC 和标记为“Demo1”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子 (接地)。图8. 将通道 1 和通道 2 输入之间的探头连接到培训信号输出端子 2. 将第二个示波器探头连接到通道 2 输入 BNC 和标记为“Demo2”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子。3 按前面板右上部分附近的 [默认设置] 键。默认设置会将示波器置于工厂预设配置中。这不仅会将示波器的 X 和 Y 刻度调整系数设置为预设值,而且还会关闭某个学生可能使用的任意特殊操作模式。4 按 [帮助] 前面板键 (在通道 2 垂直控件旁边)。5 按示波器显示屏下方的培训信号软键。6 使用 Entry 旋钮选择正弦信号 (列表顶部),然后按输出软键将其打开。现在,Demo1 端子上应存在正弦波,但是还不能使用示波器的默认刻度调整系数来识别。我们现在将调整示波器的垂直和水平设置,以扩展此波形并将此波形位于显示屏的中心。7 顺时针旋转通道 1 V/div 旋钮,直到您看到显示的波形覆盖屏幕一半以上。正确的设置应为 500 mV/div,在显示屏左上角附近显示为“500mV/”。8 顺时针旋转 s/div 旋钮 (“水平”部分中的大旋钮),直到您观察到显示屏上出现正弦波的两个以上周期。正确的设置应为 50 ns/div,在显示屏顶部中间附近显示为“50.00ns/”。您的示波器的显示屏现在应与图 9 类似。至此我们完成了时基的基本设置。图9 用于查看正弦波培训信号的初始设置9 旋转“水平”位置旋钮,左右移动波形。10 按“水平”位置旋钮,将其设回到零 (在中心屏幕上显示为 0.0 秒)。11 旋转通道 1 垂直位置旋钮,上下移动波形。请注意,左侧的地指示器也会上下移动,并告知我们此波形上 0.0 伏 (接地电平)所在的位置。12 按通道 1 垂直位置旋钮将接地 (0.0 V) 设回中心屏幕。现在,让我们对此重复正弦波执行一些测量。请注意,示波器的显示屏基本上是 X - Y 图形。在我们的 X 轴(水平)上,我们可以测量时间,在我们的 Y 轴(垂直)上,我们可以测量电压。在许多电子工程或物理课程作业中,您可能计算过电子信号并在图纸上采用类似的格式画过图,只不过是静态的。或者,您或许使用过各种 PC 软件应用程序自动画过波形图。将重复输入信号应用于示波器时,我们可以观察到波形的动态 (持续更新)图。我们的 X 轴包含分布于屏幕上的 10 个主要格,每个主要格均等于 sec/div 设置。在这种情况下,每个水平主要格均表示 50 纳秒(假设示波器的时基设置为 50.0 ns/div,如前文所述)。由于屏幕中有 10 个格,因此示波器从显示屏的左侧到显示屏的右侧显示 500 ns(50.0 ns/div x 10 格)。请注意,每个主要格还被分为 4 个次要格,在中心水平轴上显示为勾选标记。每个次要格则表示 1/4 div × 50 ns/div = 12.5 ns。我们的 Y 轴包含 8 个主要格(垂直方向),每个主要格均等于 V/div 设置,应设置为 500 mV/div。在此设置下,示波器可以测量高为 4 Vp-p(500 mV/div x 8 格)的信号。每个主要格分为 5 个次要格。每个次要格 (在中心垂直轴上表示为勾选标记)则均表示 100 mV。13 通过将一个上升沿 (中心屏幕)的 0.0 V 电平到下一个上升沿的 0.0 V 电平的格 (主要和次要)数累加起来,然后乘以 s/div 设置 (应为 50.0 ns/div),估算其中一个正弦波的周期 (T)。T= _____________14 此正弦波的频率是多少 (F = 1/T)。F = _____________现在,让我们估算这些正弦波的峰峰值电压电平,但是首先,让我们对垂直设置进行几项较小调整,从而帮助我们更准确地执行此测量。15 调整通道 1 垂直位置旋钮 (亮起的“1”键下面较小的旋钮),直到正弦波的负峰与其中一个主要格线 (或网格线)相交。16 接下来,调整水平位置旋钮 (前面板顶部附近的较小旋钮),直到正弦波的一个正峰与具有次要格勾选标记的中心垂直轴相交。17 现在,通过将正弦波的负峰到正峰的格 (主要和次要)数累加起来,然后乘以 V/div 设置 (应为 1 V/div),估算此正弦波的峰峰值电压。Vp-p = _____________现在,让我们使用示波器的“光标”功能来执行上述相同的电压和定时测量,但不必累加格数,然后乘以刻度调整系数。首先,找到前面板“测量”部分中的“ 光标”旋钮,如图 10 所示。图 10 . 测量光标旋钮18 按光标旋钮;然后旋转此旋钮,直到“X1”突出显示;接着再次按此旋钮进行选择 (如果您不是在旋转选中“X1”光标后第二次按此旋钮,可能会出现超时现象,随后 X1 光标将自动被选中,且该菜单将关闭)。19 旋转光标旋钮,直到 X1 光标 (#1 定时标识)在特定电压电平下与正弦波的某一上升沿相交。提示:在波形的某一点对齐光标,波形在该点与某一水平网格线交叉。20 再次按光标旋钮;旋转此旋钮直到“X2”突出显示;然后再次按此旋钮进行选择。21 旋转光标旋钮,直到 X2 光标 (#2 定时标识)在相同电压电平下与正弦波的下一上升沿相交。22 再次按光标旋钮;旋转此旋钮直到“Y1”突出显示;然后再次按此旋钮进行选择。图 11. 使用示波器的光标测量23 旋转光标旋钮,直到 Y1 光标 (#1 电压标识)与正弦波的负峰相交。24 再次按光标旋钮;旋转此旋钮直到“Y2”突出显示;然后再次按此旋钮进行选择。25 旋转光标旋钮,直到 Y2 光标 (#2 电压标识)与正弦波的正峰相交。26 此信号的周期、频率和峰峰值电压 (光标读数在显示屏的右侧)是多少?ΔX = _____________ 1/ΔX = _____________ ΔY(1) = _____________用于测量示波器上的时间和电压的最常用方法是我们最初使用的“将格累加起来 ”方法。尽管必须将格累加起来,然后乘以示波器设置,但是熟悉其示波器的工程师可以快速估算信号的电压和定时参数,有时大致的估算是了解信号是否符合测试要求快速的手段。使用光标进行测量更准确一点,并能从测量中去除猜测因素。今天的大多数示波器还提供了一种自动执行许多参数测量的更准确且更快的方式。当我们开始对一些数字信号执行某些测量时,我们将回过头使用实验 #10 期间示波器的自动参数测量。但是现在,我们需要回过头来了解示波器的触发功能。示波器基本实验 #2:了解示波器触发的基本知识正如前面所说,示波器触发可能是示波器最重要的功能。如果要从示波器测量中获得最多收益,应了解此功能。尝试对今天许多更复杂的数字信号执行测量时,此功能特别重要。遗憾的是,示波器触发是示波器操作中被了解得最少的方面。可将示波器“触发”看作“同步图片获取”。当示波器捕获并显示重复输入信号时,每秒可获取输入信号的数万个图片。为了查看这些波形 (或图片),必须将图片获取与“某一刻”同步。“某一刻”是输入信号中的唯一时间点,或者在使用示波器的多个通道时,是基于输入信号的布尔组合的唯一时间点 (逻辑“码型 ”触发)。示波器触发的模拟情景是赛马比赛终点的照片。尽管不是重复事件,相机快门必须与头马鼻子通过终点线的那一刻同步。在赛马开始和结束之间的某一时间随机获取赛马图片,类似于查看示波器上未触发的波形。要更好地了解示波器触发,让我们对实验 #1 中使用的我们熟悉的正弦波执行更多测量。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”培训信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 50.00 ns/div。7 按 [触发] 前面板键。您的示波器的显示屏现在与图 12 类似。如果使用示波器的默认触发条件,则此信号与 0.0 V 电平(触发电平设置)交叉时,示波器应在通道 1 探测并捕获的正弦波的上升(斜率选择)沿(触发类型选择)上触发。如果水平位置控件设置为 0.0 秒 (默认设置),则此时间点显示在中心屏幕上。在触发点之前捕获的波形数据 (显示屏左侧)被视为负时间数据,而在触发之后捕获的波形数据(显示屏右侧)被视为正时间数据。图12. 于 0.0 伏时在通道 1 的上升沿上触发示波器请注意,显示屏顶部附近“填充的”橙色三角形指示触发时间点 (0.0 s) 所在的位置。如果调整水平延迟/位置,此橙色三角形会从中心屏幕移走。中心屏幕上的“空心”橙色三角形 (仅在延迟/位置不是 0.0 s 时才可见)指示使用示波器的默认“中心”参考时延迟设置的时间位置。8 顺时针旋转触发电平旋钮,可增加触发电平电压设置。 9 逆时针旋转触发电平旋钮,可减小触发电平电压设置。增加触发电平电压设置时,应观察到正弦波在一定时间内会向左侧移动。如果减少触发电平电压设置,则正弦波会向右侧移动。最初旋转触发电平旋钮时,水平的橙色触发电平指示器将出现,实际触发电压设置始终显示在示波器显示屏的右上角。如果停止旋转触发电平旋钮,则橙色触发电平指示器将超时,且在几秒钟后会消失。但是,左侧的波形格线区域外侧仍会显示一个黄色的触发电平指示器,以指示触发电平相对于波形的设置位置。10 旋转触发电平旋钮,以将触发电平设置为恰好 500 mV(在中心屏幕上 1 格)。请注意,实际触发电平显示在显示屏的右上角。11 按斜率软键,然后选择下降沿触发条件。现在,正弦波应反转 180 度,波形的下降沿将与中心屏幕同步,如图 13 所示。图 13. 在 + 500 mV 下于正弦波的下降沿上触发12 增加触发电平电压设置,直到橙色电平指示器位于正弦波正峰上方 (大约 +1.5 V)。在正弦波上方设置触发电平时,示波器的采集和显示 (重复图片获取)不再与输入信号同步,因为示波器在此特定触发电平设置下找不到任何边沿交叉。您示波器的显示屏现在与图 14 类似。示波器现在处于“自动触发”模式下。图14. 在输入信号上方设置触发电平时自动触发自动触发是示波器的默认触发模式。当示波器使用自动触发模式时,如果示波器在一段时间 (时间会发生变化且取决于示波器的时基设置)后找不到有效的触发条件(在这种情况下正弦波的边沿交叉),则示波器将生成其各自的异步触发,并开始在随机时间获取输入信号图片 (采集)。由于“图片获取”现在是随机的,而不是与输入信号同步,因此我们看到的只是屏幕中波形的“模糊”画面。此波形的“模糊”画面会提示我们,示波器不会在输入信号上触发。13 按触发电平旋钮,以将触发电平自动设置为约 50%。14 从 Demo1 端子断开通道 1 探头连接。从信号源断开通道 1 探头连接后,现在应看到基线 0.0 V 直流信号。因为有了此 0.0 V 直流信号,我们不再具有边沿交叉,因而示波器不会触发;示波器再次“自动触发”是为了向我们显示此直流电平信号。除了默认的自动触发模式外,示波器还具有另一种用户可选择的触发模式,称为正常触发模式。现在,让我们看一下正常触发模式与自动触发模式有何不同。15 将通道 1 探头重新连接到 Demo1 端子。您应该会再次看到触发的正弦波。16 按 [模式/耦合] 前面板键 (在触发电平旋钮右侧)。17 旋转 Entry 旋钮将触发模式选择从自动更改为正常。此时,您应该看不出显示波形中有任何差异。18 再次从 Demo1 端子断开通道 1 探头连接。现在,您应看到探头断开连接之前发生的最后一次采集 (最后一张图片)。我们看不到自动触发模式显示的 0.0 V 直流电平轨迹。如果选择正常触发模式,则当且仅当 示波器检测到有效的触发条件 (在这种情况下为边沿交叉)时示波器仅会显示波形。19 顺时针旋转触发旋钮,以便将触发电平设置在 +1.50 V(在我们的正弦波上方)。20 将通道 1 探头重新连接到 Demo1 端子。正弦波现在已连接且正在输入到示波器,但是此信号的重复显示在哪里?由于我们使用的是正常触发模式,因此示波器仍然需要有效的边沿交叉,但是由于触发电平设置在波形上方 (@ +1.50 V),因此不存在有效的边沿交叉。正如我们使用正常触发模式看到的一样,对于波形的位置我们没有任何线索,我们无法测量直流电源。21 按触发电平旋钮,以将触发电平自动设置为约 50%。示波器应该开始再次显示重复波形。一些较早使用的示波器将我们今天称为正常的触发模式叫作“触发的”触发模式,实际上可能是此触发模式的更具体的说明性术语,因此在此模式下,示波器仅在发现有效的触发条件时才触发,不会生成自动触发 (异步触发,以生成异步图片获取)。稍显矛盾的是,正常触发模式不是“通常”使用的触发模式,它不是示波器的默认触发模式。通常使用的触发模式为自动触发模式,是示波器的默认触发模式。此时,您可能会好奇要何时使用正常触发模式。当触发事件不是频繁发生时 (包括单冲事件),应使用正常触发模式。例如,如果您将示波器设置为显示非常窄的脉冲,但是如果此脉冲只以 1 Hz 的频率出现 (每秒出现一次),并且如果示波器的触发模式被设置为自动触发模式,则示波器会生成许多异步生成的自动触发,而不能显示罕见的窄脉冲。在这种情况下,您需要选择正常触发模式,这样示波器将等到获取有效的触发事件后,才显示波形。稍后,我们将在今后实验期间连接到这类信号。但是现在,让我们了解有关在噪声信号上触发的更多信息。示波器基本实验#3:触发噪声信号重复正弦波大概是示波器触发的信号中最简单的一种类型。但是,在真实世界中,信号不是如此简单。在本实验中,我们将了解学习如何在嘈杂的环境 (真实世界情况)中触发信号,还将学习如何使用波形平均化消除数字化波形中的噪声。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 如果使用 Entry 旋钮,此时应选择“带噪声的正弦”信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。 6 将示波器的时基设置为 200.0 µs/div。即使示波器的默认设置条件将示波器配置为于 0.0 V 时在上升沿触发,示波器也会在此噪声正弦波的上升沿和下降沿触发,如图 15 所示。示波器实际上仅在上升沿触发。但是,当示波器在正弦波的下降沿触发时,实际上是在正弦波上随机噪声的上升沿触发。图15. 尝试在嘈杂的环境中触发信号7 通过将时基设置为 200.0 ns/div,验证示波器是否在噪声的上升沿触发。8 将示波器的时基设回到 200.0 µs/div。那么,我们如何在仅与正弦波 (无噪声)的上升沿重合的情况下使示波器触发?现在,让我们更多地了解一些示波器的用户可选择触发耦合选项。9 按 [模式/耦合] 前面板键 (触发电平旋钮旁边)。10 按高频抑制软键,以打开“高频抑制”滤波器。向示波器输入的信号实际上被拆分并沿着示波器内部的两条不同模拟路径向下发送。沿着其中一条路径向下的信号将被示波器的采集系统捕获 (图片获取系统)。类似的信号沿着一条单独的路径向下发送,由示波器的模拟触发电路处理。(请参考附录 A 中显示的示波器框图。)选择高频抑制后,由示波器的模拟触发电路处理的信号首先通过 50 kHz 低通滤波器。由于噪声由广泛连续的频率组成,包括高频率分量,因此触发电路随后会“看到”消除/衰减了大部分噪声的正弦波,而沿着采集路径向下发送的信号不受影响 (噪声被保留)。这样,我们就会看到噪声,如图 16 所示,但是示波器的触发电路看不到噪声。但是有一些限制。图16. 使用高频抑制触发噪声正弦波由于高频抑制滤波器基于固定的 50 kHz 低通硬件滤波器,因此不能在更高频率的信号上使用。这种 50 kHz 低通滤波器不影响我们的 1 kHz 正弦波培训信号。但是,如果我们尝试在 20 MHz 噪声正弦波上使用触发高频抑制,则 50 kHz 滤波器将“消灭”噪声和基本 20 MHz 正弦波,使其不可能触发任何信号。但是,我们还有两个选项。11 再次按高频抑制软键,将其关闭。示波器应再次在正弦波的上升沿和下降沿 触发。12 按噪声抑制软键,以打开“噪声抑制”滤波器。噪声抑制滤波器不是基于频率,而是基于幅度。尽管我们讨论了单触发电平,实际上信号必须交叉通过两个电平才能被鉴定为有效触发。这称为“触发滞后”,有时称为“触发灵敏度”。大多数示波器的默认触发灵敏度为 0.5 格。这意味着,输入信号必须摆动至少 0.5 格 (峰到峰)才能被鉴定为有效触发条件。但是,这也意味着,当噪声超过越 0.5 格 (峰到峰)时,示波器会触发噪声。选择噪声抑制时,示波器的滞后被扩展到约 1.0 格 (峰到峰)。对于这种特定的噪声正弦波,大多数时候,1.0 格的触发滞后可以解决我们遇到的问题。您可能会注意到示波器的显示屏上有一些“闪光”现象。这意味着,1.0 格的滞后相当不足。另一种解决方案是使用示波器的触发释抑功能,我们将在实验 #7 期间讨论。从带有噪声的此正弦波的测量离开之前,如果您想要查看此正弦波并对其执行测量,但却没有随机噪声,情况会怎样?13 按高频抑制软键。现在,高频抑制滤波以及噪声抑制滤波都应打开,为我们提供一种非常稳定的触发。14 按前面板波形区中的 [采集] 键 (就在光标旋钮下方)。15 旋转 Entry 旋钮将示波器的采集模式从正常更改为平均。选择平均采集模式时,示波器会对多个波形采集一起进行平均操作。如果信号中的噪声是随机的,则噪声分量会平均出来,因此我们随后可以仅对基本信号分量执行更准确的测量,如图 17 所示。图17. 使用示波器的平均采集模式消除噪声16 使用我们在实验 #1 中学到的测量技术确定以下各项:周期 = _____________频率 = _____________ Vp-p = _____________示波器基本实验 #4:记录和保存示波器测试结果完成各种电路实验作业后,您的教授可能需要您详细描写测试报告。可能需要包括实验报告中测量的图像 (图片)。此外,如果您不能在某个会话期间完成实验作业,则可能需要稍后继续测试。但是,如果您可以从中断的地方恢复,效果会好,您不必重新设置示波器,可能也不必重新采集波形。在本实验中,您将了解如何保存并调用各种示波器文件类型,包括图像、参考波形和设置。对于本实验,您必须有权访问个人 USB 存储设备。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”波形,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 100 ns/div。此时,您应该会看到正弦波的五个周期,如图 18 所示。现在,让我们保存此图像 (图片)、保存波形,并保存设置。图18. 我们要保存以便归档及随后分析的正弦波的五个周期7 将您的个人 USB 存储设备插入示波器的前面板 USB 端口。8 按前面板文件区中的 [保存/调用] 键 (在光标旋钮下方)。9 按保存软键,然后按格式软键。10 使用 Entry 旋钮选择 PNG 24 位图像 (*.png)。11 按保存到(或按下选择)软键,然后使用 Entry 旋钮指向 \usb。12 按文件名软键,然后旋转 Entry 旋钮并为此文件提供名称。现在,我们将其称为“test”。13 旋转通用 Entry 旋钮时,字母数字字符串将弹出。只需拨号到第一个字母(在本例中为“t”),然后按 Enter 软键,或按 Entry 旋钮。14 对此文件名中其余的每个字符重复步骤 #13。15 按删除软键,从默认文件名中删除其余所有字符。16 按增量软键,以关闭自动增量 (框应为黑色)。请注意,如果自动增量已启用,则示波器将自动增加与文件名关联的数字。如果您打算保存多个图像,则这可能非常有用,您无需在每个保存操作之间手动重新输入不同的文件名。17 按下按下以保存软键。您的 USB 存储设备现在应具有与图 18 类似的示波器显示屏的存储图像。文件名应为“test.png”。您可以打开此文件或随后将其插入 Microsoft-Word 文档,以查看它是否真的在那里。现在,让我们来保存示波器的设置条件。18 按下 [保存/调用] 前面板键。19 按保存软键,然后按格式软键。20 使用 Entry 旋钮选择设置 (*.scp)。21 按保存到(或按下选择或位置)软键。22 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。23 按文件名软键。您会看到以前输入的文件名将变为新的默认文件名。由于“设置”文件格式使用其他文件扩展名,因此可以使用相同的文件名。24 按下按下以保存软键。USB 存储设备现在应该具有名为“test.scp”的文件,其中包含示波器的当前设置配置。我们将在以后调用此设置配置。请注意,您还可以将设置保存到示波器内部的某个闪存寄存器。但是,接下来可能使用此示波器的某个学生会用他/她的设置覆盖此存储寄存器。因此,作为学生,使用共享示波器借助自己的个人存储设备保存示波器设置和波形始终是很好的方法。现在,让我们保存参考波形数据文件。25 按下 [保存/调用] 前面板键。26 按保存软键,然后按格式软键。27 使用 Entry 旋钮选择参考波形数据文件 (*.h5)。28 按保存到(或按下选择)软键。29 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。30 按文件名软键。重申一下,我们不需要定义新的名称,因为此文件格式还具有唯一的文件扩展名 (test.h5)。31 按下按下以保存软键。请注意,我们在前面保存 .png 文件类型后,这仅是示波器显示的像素映射。此类文件不能回调到示波器中,而且无法对此类文件中存储的数据执行测量。此类文件以及 .bmp 文件类型主要对归档目的 (如纳入实验报告中)非常有用。但是,我们刚刚存储的“参考波形”数据文件 (.h5) 会将电压与时间数据作为 X-Y 对来保存。此类文件可以回调到示波器中,以便以后进行文件。您还可以将此类文件回调到许多 PC 应用程序中,以便进行更广泛的脱机分析。既然我们已保存了示波器的设置配置,而且还保存了波形 (正弦波的四个周期),让我们看一下是否可以调用这些文件。不过,首先我们会从默认设置开始,目的是破坏您在屏幕上看到的当前设置和波形。32 按下 [默认设置]。33 按下 [保存/调用]。34 按下调用软键,然后按下一个调用软键。35 使用 Entry 旋钮选择设置作为要调用的文件类型。36 按位置(或按下选择或调用自)软键,然后使用 Entry 旋钮指向“test”。 37 按按下以调用软键,或者按 Entry 旋钮。我们应该刚将示波器的设置恢复到其以前的配置。但是,示波器不会保存培训信号的状态。因此,此时我们看到的唯一波形应为基线 (0.0 V) 信号,因为探头的输入中没有出现信号。现在,让我们调用以前保存的波形。38 按调用软键,然后使用 Entry 旋钮选择参考波形数据 (*.h5)。39 按调用自(或按下选择或位置)软键,然后使用 Entry 旋钮指向“test”。 40 按按下以调用软键,或者按 Entry 旋钮。现在,您应该使用以前的设置配置查看我们已存储的正弦波版本 (以及活动 0.0 V 基线信号),如图 19 所示。此时,您可以更改设置 (如果您愿意),还可以继续对此存储的波形执行测量。请注意,保存/调用数据后,您可以随时删除您的 USB 存储设备。图19. 调用示波器的设置配置和波形示波器基本实验 #5:补偿 10:1 无源探头既然您已完成了此示波器培训指南中的前四个实验,应该在一定程度上熟悉了如何使用示波器进行基本电压和定时测量,让我们回过头来再次讨论探测。在本指南的入门部分中,我们简要讨论了探测,并显示了 10:1 无源探头和示波器的输入组合的电子输入模型。探头和示波器的此电子模型在此处再次显示在图 20 中。图20. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图如果您记住了,就说明系统已指导您忽略此电子模型中的电容组件,只考虑阻性组件。当前我们只观察阻性组件时,我们已确定探头的 9 MΩ 探头端部电阻以及示波器的 1 MΩ 输入阻抗建立了 10:1 分压器比率。对于低频或直流电应用,忽略电容元件是比较适宜的。但是,如果您需要测量动态信号 (示波器的主要测量应用),则不能忽略此电子模型的电容元件。所有示波器探头和示波器输入中本身都固有寄生电容。这些包括探头电缆电容 (C 电缆),以及示波器的输入电容 (C 示波器)。“固有/寄生”仅意味着电子模型的这些元件非有意设计,而是真实电子世界中原本就存在的。固有/寄生电容的数量随着示波器的不同和探头的不同而异。但是,如果没有其他的设计电容组件来补偿系统中固有的电容元件,则系统在动态信号条件 (非直流)下的阻抗会从探测系统的整体动态衰减改为不同于所需的 10:1 比率。沿着可调补偿电容 (C 组件)分布其他/设计的探针电容器 (C 探针)的目的是建立与 10:1 的阻性衰减匹配的电容阻抗衰减。正确调整补偿电容时,这还可以确保与 9 MΩ 电阻器并列的探针电容的时间常数,和与示波器的 1 MΩ 输入电阻器并列的固有和补偿电容的时间常数匹配。我们不会花很多时间讨论这一原理,只是连接到某个信号,并了解欠补偿、补偿过度和适当补偿的影响。但是,首先应注意我们会将通道 1 探头连接到前一个实验中的其他端子。1 将两个 示波器探头连接到标记了探头补偿的端子。请注意,这与称为 Demo2 的端子也是同一个端子。2 按下示波器前面板上的 [默认设置]。3 将通道 1 设置为 1.0 V/div。4 将通道 1 偏移/位置设置为 0.0 V(默认设置)。5 按触发电平旋钮,以将通道 1 上的触发电平设置为约 50%。6 按 [2] 前面板键以打开通道 2。7 将通道 2 设置为 1.0 V/div。8 将通道 2 偏移/位置设置为约 +3.5 V。9 将示波器的时基设置为 200.0 µs/div。如果正确补偿了探头,则应在示波器显示屏上看到两个带有平坦响应的 1 kHz 方波,与图 21 类似。现在,让我们调整每个探头上的探头补偿。图21. 使用示波器的 1 kHz 探头补偿信号补偿 10:1 无源探头10 使用小的“一字”螺丝刀,调整位于每个探头主体上的可变电容器。请注意,此调整有时位于一些探头的 BNC 连接端附近。图 22 显示了通道 1 探头(黄色波形)补偿过度的示例,以及通道 2 探头(绿色波形)欠补偿的示例。如果您没有观察到近乎完美的方波,则应重新调整探头上的探头补偿,直到示波器上的波形与图 21 类似。图22. 不当补偿的探头正确调整探头后,只要在此示波器上继续使用这些探头,在下次使用示波器时应该就不需要重新调整它们了。此时,您已完成了本实验的实践部分。如果您赶时间,并需要完成本章中最后一个实验,则应跳到实验 #6,然后读取本实验后面其余部分的内容。计算电容补偿的正确数量如果您面临挑战,请使用以下假设条件计算正确补偿所需的补偿电容 (C comp) 数量:对于计算所需的补偿电容 (C comp) 数量,最早的方法是使 R tip 和 C tip 并联的时间常数 (1/RC) 与 R scope 和 C parallel 并联的时间常数相等。请记住,C parallel 是探头/示波器模型中的三个电容元件的组合。另一种计算方法是使 C parallel 的电容阻抗的 9 倍与 C tip 电容阻抗的 1 倍相等。这将建立电容阻抗产生的衰减常数,与仅阻性网络 (10:1) 产生的衰减常数相同:探头负载除了适当补偿 10:1 无源探头以获得最为准确的示波器测量外,另一个必须要考虑的问题就是探头负载。换句话说,将探头和示波器连接到被测件 (DUT) 是否会改变电路的行为?将任何仪器连接到电路中后,仪器本身 (包括探头)都会成为 DUT 的一部分,并在某种程度上成为信号“负载”或改变信号的行为。如果使用上面列出的电阻和电容的给定值(以及已计算的 C comp 值),我们可以按照单个电阻器和电容器的并联方式将探头和示波器的负载影响通过建模方式合并在一起,如图 23 所示。图23. 10:1 无源探头和示波器负载模型对于低频或直流电应用,负载由 10 MΩ 电阻控制,在大多数情况下,这不应成为问题。但是,如果您探测的是 100 MHz 数字时钟信号,会怎么样?此数字时钟的第 5 个谐波 (用于创建此信号形状的重要分量)将为 500 MHz。现在,应计算由此负载模型的 13.5 pF 电容提供的阻抗,如图 23 所示:尽管 13.5 pF 看起来可能不多,但是频率越高,此负载电容数量就会很大。对于此类较高频的应用,大多数示波器供应商提供了可选的有源探头解决方案,它们具有更低的输入电容 (辅助 pF)。但是,这些类型的特殊探头成本比典型的 10:1 无源探头要高很多。最后,请注意本实验中显示的探头 + 示波器模型非常简单。较准确的模型还包括电感元件。电线 (特别是接地引线)应被视为电感元件,特别是对高频应用而言。示波器基本实验 #6:使用内置函数发生器生成波形除了示波器以外,您还将在各种电子工程和/或物理电路实验中使用大量测试设备,包括电源、数字万用表和函数发生器。函数发生器可以产生大量不同类型/形状的信号,这些将用作电路设计和实验的动态输入。Keysight 的 InfiniiVision 2000 和 3000 X 系列示波器具有内置的可选函数发生器,称为 WaveGen。若要完成这个简短的实验,前提条件是示波器上已正确安装此选件许可证。如果您不知道函数发生器功能是否已被许可并启用,请按 [Wave Gen] 前面板键。如果启用此选件,则波形发生器的菜单将出现。如果没有启用此选件,则您会看到屏幕上出现一条消息,指示此选件尚未得到许可。假设您的示波器具有 WaveGen 选件,让我们开始这一简短的实验,了解如何使用通用函数发生器。1 从示波器断开所有探头的连接。2 将 50 Ω BNC 同轴电缆连接到发生器的输出(电源开关旁边)与通道 1 输入BNC 之间。3 按下 [默认设置]。4 如果您使用的是 Keysight 2000 X 系列示波器,则需要将通道 1 的探头衰减常数设置为 1:1。按 [1] 前面板键,然后按探头软键。按新的探头软键,然后旋转 Entry 旋钮将衰减常数设置为 1.00:1。5 按 [WaveGen] 前面板键 (在通道 1 V/div 旋钮正上方)。6 按设置软键,然后按默认波形发生器软键。请注意,示波器的 [默认设置] 不会更改 WaveGen 的设置。因此,要确保从同一个起点开始,我们还需要发生器的默认设置。7 再次按 [WaveGen] 前面板键。8 将通道 1 的 V/div 设置设为 100 mV/div。9 将示波器的时基设置为 100.0 µs/div(默认设置)。您现在应该看到示波器上的正弦波的一个周期,与图 24 类似。峰峰值振幅为 500 mV 的 1.000 kHz 正弦波是 WaveGen 的默认信号。现在,让我们对信号进行一些更改。图24. 使用示波器的内置 WaveGen 函数发生器10 按频率软键,然后旋转 Entry 旋钮增加或减少频率。请注意,最大频率设置为 20.00 MHz。11 按振幅软键,然后旋转 Entry 旋钮以更改此信号的振幅。12 按偏移软键,然后旋转 Entry 旋钮以更改此信号的偏移。13 按波形软键,然后旋转 Entry 旋钮选择各种波形。请注意,选择方波后,您还可以微调占空比。选择脉冲后,您可以微调脉冲宽度。从此时开始,您可能不会将发生器的输出直接连接到示波器中了。您可能会将发生器的输出连接到电路的输入。随后,您将使用带有探头的示波器监视电路的输入和输出。就到这儿吧!了解使用示波器示波器进行实验测量的更多信息:编辑于 2022-08-04 09:28仪器仪表示波器示波器校准仪赞同 4039 条评论分享喜欢收藏申请
示波器的调节与使用误差分析 - 21ic电子网
示波器的调节与使用误差分析 - 21ic电子网
登 录
注 册
钱 包
手机版
模拟
首页
技术/专栏
通信技术
显示光电
单片机
测试测量
智能硬件
汽车电子
消费电子
工业控制
医疗电子
电路图
物联网
模拟
专访
电源
芯闻号
嵌入式
技术学院
公众号精选
厂商动态
新基建
中国芯
全部专栏>
阅读
新闻
新品
应用
会展
社区互动
论坛
外包
招聘
问答
课程
直播
公开课
在线研讨会
TI在线培训中心
设计资源
下载
电路图
计算器
datasheet
厂商
活动
文章
专栏
论坛
下载
外包
Datasheet
当前位置:首页
>
模拟
> 模拟技术
原创 示波器的调节与使用误差分析
时间:2024-03-10 14:00:01
关键字:
示波器
电源
电位器
手机看文章扫描二维码随时随地手机看文章
[导读]电源未接通;辉度旋钮未调节好;X,Y轴移位旋钮位置调偏;Y轴平衡电位器调整不当,造成直流放大电路严重失衡。示波器维修
示波器使用——实验报告的误差分析主要有以下几点:
1、没有光点或波形
电源未接通;辉度旋钮未调节好;X,Y轴移位旋钮位置调偏;Y轴平衡电位器调整不当,造成直流放大电路严重失衡。示波器维修
2、水平方向展不开
触发源选择开关置于外档,且无外触发信号输入,则无锯齿波产生;电平旋钮调节不当;稳定度电位器没有调整在使扫描电路处于待触发的临界状态;X轴选择误置于X外接位置,且外接插座上又无信号输入。
两踪示波器如果只使用A通道(B通道无输入信号),而内触发开关置于拉YB位置,则无锯齿波产生。
3、垂直方向无展示
输入耦合方式DC-接地-AC开关误置于接地位置;输入端的高、低电位端与被测电路的高、低电位端接反;输入信号较小,而V/div误置于低灵敏度档。
4、波形不稳定
稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态);触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。
选择高频触发状态时,触发源选择开关误置于外档;部分示波器扫描处于自动档(连续扫描)时,波形不稳定。示波器维修
5、垂直线条密集或呈现一矩形
t/div开关选择不当,致使f扫描<
6、水平线条密集或呈一条倾斜水平线
t/div关选择不当,致使f扫描>>f信号。
示波器的使用方法
1.获得基线:当操作者在使用无使用说明书的示波器时,首先要获得一条zui细的水平基线,然后才能用探头进行其他测量,其具体方法如下:
(1)预置面板各开关、旋钮。
亮度置适中,聚焦和辅助聚焦置适中,垂直输入耦合置“AC,,,垂直电压量程选择置"5mv/div",垂直工作方式选择置“CHl”,垂直灵敏度微调校准位置置“CAL",垂直通道同步源选择置中间位置,垂直位置置中间位置,A和B扫描时间因数一起预置在“0.5ms/div",A扫描时间微调置校准位置“CAL’’,水平位移置中间位置,扫描工作方式置“A”,触发同步方式置“AUTO",斜率开关置“+”
,触发耦合开关置“AC’’,触发源选择置"INT"。 (2)按下电源开关,电源指示灯点亮。
(3)调节A亮度聚焦等有关控制旋钮,可出现纤细明亮的扫描基线,调节基线使其位置于屏幕中间与水平坐标刻度基本重合。
(4)调节轨迹平行度控制使基线与水平坐标平行。
2.显示信号:一般情况下,示波器本身均有一个0.5Vp—p标准方波信号输出口,当获得基线后,即可将探头接到此处,此时屏幕应有一串方波信号,调节电压量程和扫描时间因数旋钮,方波的幅度和宽窄应变化,至此说明示波器基本调整完毕可以投入使用。
3.测量信号:将测试线接在CHl或CH2输入插座,测试探头触及测试点,即可在示波器上观察到波形。如果波形幅度太大或太小,可调整电压量程旋钮;如果波形周期显示不适合,可调整扫描速度旋钮。
特殊使用方法 1.交流峰值电压测量 (1)获得基线。 (2)调整V/div旋钮,使波形在垂直方向显示5div(即5格)。
(3)调节“A触发电平”获得稳定显示。 (4)用以下公式计算峰值电压。 电压(p—p):垂直偏转幅度/度x(VOLTS/div)/开关档极x探极衰减倍率。
例如:测得上峰到下峰偏转是5.6度,VOLTS/dir开关置0.5,用x10探极衰减倍率,将数据代人:电压二5. 6X0.5 X 10二28 V。
2.上升时间测量 上升时间:水平距离(度)x时间/度(档极)/扩展系数。
例如:波形两点间的距离为5度,时间/度档级为1Us,x10扩展末扩展(即x1),将给定值代人:上升时I司;5X1 /1;51xs。 3.相位差测量
相位差:水平差值(度)x水平刻度校准值(度/度)。 例如:水平差值为0.6度,每度校准到45度,将给定值代人公式:相位差:0.6x45:27
示波器的使用技巧
1、如何测量直流电压?
答:首先需要设置耦合方式为直流,根据大概的范围调节垂直档位到一个合适的值,然后比较偏移线跟通道标志的位移。
2、用户反应测量220V市电的时候幅度超出屏幕范围?三相电源的相位差如何测?
答:zui大输入峰峰值电压是400V,根据有效值换算峰峰值公式220V市电超过了400V峰峰值,幅度超出屏幕范围正常现象。用示波器测量三相电源相移的时候,可以设置触发源为市电,并使用一通道先测A-B波形,然后存储为参考波形,再使用探头连接B-C,这时可以测量出相移。
3、什么是混淆抑制作用?
答:混淆是指示波器采集的频率低于实际信号zui大频率的2倍采集产生的一种状况。混淆抑制是为了防止混淆的产生而专门设计的,混淆抑制可判别信号的zui大频率,并以2倍的zui大频率采集信号。
4、如何捕捉非周期性的信号?
答: ①、设定触发电平至需要的值。
②、点击主控按钮SINGLE,机器开始等待,如果有某一信号达到设定的触发电平,即采样一次,显示在屏幕上。利用此功能可以轻易捕捉到偶然发生的事件,例如幅度较大的突发性毛刺:将触发电平设置到刚刚高于正常信号电平,点击SINGLE按钮,则当毛刺发生时,机器自动触发并把触发前后一段时间的波形记录下来。拖动触发位置标志线可以得到不同长度的负延迟触发,便于观察毛刺发生之前的波形。
5、如何观察低压直流电源的噪声?
答:①、连接示波器探头于通道A1(或A2)与被测点之间。 ②、设定触发源(Trigger Source)为A1或A2(必须与实际被测信号输入的通道一致)。
③、点击A1或A2按钮,选定耦合方式为AC(交流)耦合。 ④、调节采样速率及垂直灵敏度,直至得到满意的显示。
6、示波器的获取方式可应用在哪些场合?
答:观察单次信号请选用实时采样方式,观察高频周期性信号可以选用等效采样方式。希望观察信号的包络避免混淆,请选用峰值检测方式。期望减少所显示信号中的随即噪音,请选用平均采样方式,平均值的次数可以选择。观察低频信号,选择滚动模式方式。希望显示波形接近模拟示波器效果,请选用模拟获取方式。
7、触发和波形采集的关系如何?
答:针对不同类型的示波器,示波器不同的捕获方式,触发和波形采集的关系不同。如果是采样示波器或实时示波器的等价时间采样模式,一个波形的采集需要多次触发完成的。针对实时示波器的实时采样模式,触发一次,波形肯定会采集一次,不触发,波形也可能采集,这就是触发的AUTO模式。(有三种触发模式,一种是AUTO,不触发,波形也会刷新,但波形在屏幕上会不稳定,另一种是NORMAL,只有触发才刷新,zui后一种是SINGLE,*次触发捕获波形,以后就不在捕获波形了。)。
8、保存波形后的数据能自动生成EXCEL表?
答:能。Ultrascope软件能够把下载后波形数据自动保存为Excel表的文件格式。
9、采集信号后,画面中并未出现信号的波形。怎么处理?
答:可以按照下面步骤检查处理: 1. 检查探头是否正常接在信号连接线上; 2. 检查信号连接线是否正常接在BNC(即通道连接器)上; 3.
检查探头是否与待测物正常连接; 4. 检查待测物是否有讯号产生(可将有讯号产生的通道与有问题的通道接在一起来确定问题所在)。 5. 再重新采集信号一次。
10、毛刺/脉宽触发的应用场合有那些?
答:毛刺/脉宽触发一般有两种典型应用场合,一是同步电路行为,如利用它来同步串行信号,或对于干扰非常严重的应用,无法用边沿触发正确同步信号,脉宽触发就是一个选择;另一是用来发现信号中的异常现象,如因干扰或竞争引起的窄毛刺,由于该异常是偶发显现,必须用毛刺触发来捕获(另一种方法是峰值检测方式,但峰值检测的方法有可能受其zui大采样率的限制,同时,一般是能看,不能测)。若被测对象的脉冲宽度是50ns,而且该信号没有任何问题,也就是说,没有因干扰,竞争等问题引起的信号畸变或更窄的,用边沿触发就可同步该信号,无需使用毛刺触发。
欲知详情,请下载word文档 下载文档
来源:潜力变实力
声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读
[TDK]
TDK 推出具备模拟和开关输出的新型双芯片抗杂散场 3D 位置传感器
TDK株式会社(TSE:6762)利用适用于汽车和工业应用场景的新型双芯片传感器 HAR 3920-2100*,进一步扩充了 Micronas 3D HAL® 位置传感器系列。其设计旨在满足在存在干扰杂散场的情况下,对线...
关键字:
传感器
电位器
节流阀
[智能硬件]
电压过冲危害大么
本文旨在深入探讨电压过冲对电子设备、电路及人身安全的潜在危害。文章首先简要介绍了电压过冲的概念和产生原因,随后详细分析了电压过冲对电子设备、电路元件的损害,以及可能引发的人身安全问题。最后,文章提出了预防电压过冲的措施和...
关键字:
电子设备
电路
电源
[模拟技术]
开关电源不起振原因分析
开关电源的输入电压如果过低或过高,都有可能导致不起振的情况。当输入电压过低时,电源无法启动,因为电源无法获得足够的能量来开关。
关键字:
开关电源
电压
电源
[消费电子]
开关电源与变压器电源优点和缺点
变压器电源的优点包括输出稳定、噪音小、价格相对较低、对于电磁干扰抵抗能力较强、稳定性较好、受负载波动影响小。
关键字:
开关电源
变压器
电源
[消费电子]
直流开关电源工作原理
开关直流电源是开关电源的一种,利用电路控制开关管进行高速导通和截止,将直流电转化为提供给变压器的高频交流电进行电压变化,从而产生一组或多组所需的电压。
关键字:
直流开关电源
电源
高速导通
[e络盟]
e络盟开售Traco Power 5-50瓦紧凑型封装TMPW系列产品
5-50瓦封装电源采用PCB和机箱安装封装的塑料外壳。机箱安装型号适用于螺丝端子或可选的JST连接器。它们扩展的输入范围 90-305 VAC使其成为众多工业和家庭/建筑应用的理想选择。
关键字:
PCB
机箱
电源
[模拟技术]
开关电源怎么选型
下面介绍几点开关电源选型技巧,让大家在选择开关电源的过程中,少走弯路,然后再尽可能选择正规的开关电源产品,这样使用的效果会好很多。
关键字:
开关电源
稳压开关电源
电源
[电源]
开关电源芯片无输出
开关电源芯片将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对开关电源芯片的相关情况以及信息有所认识和了解,详细内容如下。
关键字:
电源
开关电源
芯片
[消费电子]
开关电源原理简述
什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多。
关键字:
开关电源
电源
开关管
[模拟技术]
示波器是干什么用的呢
示波器是一类能够 用于检测交流电流或脉冲电流波的形态的仪器设备。示波器由电子管放大仪、扫描振荡器、阴极射线等组合而成。
关键字:
示波器
交流电流
脉冲电流
[泰克科技(Tektronix)]
【做信号链,你需要了解的高速信号知识(一)】为什么要使用LVDS或JESD204B标准?
我们在设计高速接口芯片时,到底应该使用LVDS,还是CML(JESD204)呢?
关键字:
示波器
测试测量
[e络盟]
e络盟现货发售Murata新款高效直流-直流转换器
e络盟为客户提供强大的新款Murata直流-直流转换器系列电源产品
关键字:
转换器
电源
桥式电路
[泰克科技(Tektronix)]
【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事
当需要同步捕获许多信号时,实现示波器同步有多种办法。本文介绍了使用5和6系列B MSO示波器以及TekScope PC分析软件同步多示波器测量系统的三种方法。
关键字:
示波器
测试测量
[电源]
开关电源变压器绕制
开关电源变压器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对开关电源变压器的相关情况以及信息有所认识和了解,详细内容如下。
关键字:
电源
开关电源
开关电源变压器
[电源]
开关电源烧了什么原因
在这篇文章中,小编将对开关电源的相关内容和情况加以介绍以帮助大家增进对开关电源的了解程度,和小编一起来阅读以下内容吧。
关键字:
电源
开关电源
[泰克科技(Tektronix)]
【探索前沿 测试为先】低电压测试,AI技术热潮背后算力核心的重要支撑
泰克的MSO6B系列示波器的底噪性能非常优异,底噪的有效值在20MHZ带宽下低至8.68uV,1G带宽下低至51.5uV,是测量电源纹波和噪声的最佳选择。
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
【泰克应用分享】如何实现MSO示波器更多通道的测试
本文以泰克4,5和6系列MSO为例,说明了多示波器同步的程序和原理。
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
MIMO雷达系统测试工具和技术
泰克DPO70000SX或MSO/DPO70000DX系列示波器,是一种理想的仪器,专为实现宽带宽和相位一致而设计。它支持中心频率、频谱宽度和分辨带宽(RBW)等参数的独立设置,与用于多通道控制和分析的SignalVu...
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
凭借800V电动汽车动力总成设计解决“里程焦虑”问题
在验证和诊断电动汽车牵引电机和逆变器的设计问题时,示波器能够发挥举足轻重的作用。泰克可凭借旗下的4系列B MSO、5系列B MSO和6系列B MSO示波器,为工程师提供宽禁带双脉冲测试(DPT,简称双脉冲测试)解决方案,...
关键字:
示波器
电动汽车
[Microchip]
Microchip推出3.3 kV XIFM 即插即用mSiC™ 栅极驱动器 进一步扩展其mSiC 解决方案,加速高压SiC 电源模块采用
这款高度集成的 3.3 kV XIFM 即插即用数字栅极驱动器可与基于SiC的高压电源模块搭配使用,从而简化并加快系统集成
关键字:
栅极驱动器
SiC
电源
厂商专栏
厂商文章
5156篇文章
贸泽电子
768篇文章
ADI
716篇文章
意法半导体
709篇文章
英飞凌
430篇文章
是德科技
311篇文章
热门文章
中国工程师在美国被捕:涉嫌TPU/GPU泄密!
美国要求字节跳动在165天内剥离TikTok,官方回应!
气炸了!程序员因出现Bug,被公司要求归还4万多年终奖
曝华强北Vision Pro售价仅一千,老板:便宜不丢人!
破产清算!又一PCB大厂没挺过春节…
疯了!整个亚洲疯抢RTX 4090倒卖中国,简直暴利!
MCU巨头降薪20%!
中兴小米大裁员,京东涨薪!
突发!又一老牌PCB大厂破产清算
重磅!华为宣布与淘宝合作
编辑精选
更多
论坛活动
泰克全新4系列B MSO,与各种测试挑战say goodbye
(有奖)经常被低阻抗设计困扰?村田这份白皮书为您排忧解难
华邦存储专题来袭,拼图赢好礼~
东芝精品参考设计专题
更多
论坛热帖
十大技术帖
十大生活帖
有懂高压电源的吗?请进
如何在SecureCRT中设置日志带时间戳?
GD32驱动软件IIC---OLED
干货 | 电路中为何需要串联小电阻?这样解释就懂了
STM32CubeIDE升级后 printf 大坑
请问XHCODE AWD如何设置
通过RTT输出数据和直接输出的数据不一致
隔空手势识别测试系统
这个板载的调试器的驱动和MDK芯片包哪里下载?
医疗耗材上有什么芯片可以选择吗,保证耗材不被替换?
验傻真品,听花,被点名
今年315晚会有何感受
一种生活规律惯了突然改变不知咋玩了
新冠又开始反扑
出国留学花200万回国月薪4000元
末位淘汰大家都听说过,首位保留有人听说过么
又是一年315时——你买到过那些假货
平时工作比较忙大家有什么比较好的减肥方式?
欢迎接龙——附庸风雅一番
家庭需要自备灭火器吗,大家有没有买家用灭火器?
技术子站
更多
资料下载
STM32F103ZET6(中文参考手册)
OLED显示屏STM32F103C8T6_IIC例程
黑马程序员模拟电路
APM32E103ZE-MINIBOARD V1.0 开发板原理图
Multisim仿真100例.
PDF to CAD
LS5120 开发包,NFC SDK HDK
CS1622 LCD驱动器产品说明书
汽车电子美标SAE J1939协议 最全的中文版协议
OLED显示屏C51
更多
技术学院
什么是普通放大器?什么是仪表放大器?二者有何区别?
什么是放大器?差分放大器与单端放大器有什么区别?
笔记本怎么设置密码?如何判断笔记本散热?
什么是无线电遥控技术?无线电遥控器介绍!
无线遥控器编码方式了解吗?如何处理无线遥控器故障?
什么是工业无线遥控器?工业无线遥控器遥控距离受什么影响?
TrendForce集邦咨询:HBM3原由SK海力士独供,三星获AMD验证通过将急起直追
TrendForce集邦咨询:2023年第四季全球前十大晶圆代工业者营收季增7.9%,全年达1,115.4亿美元
21ic官方微博
文章
专栏
论坛
下载
外包
Datasheet
阅读
充电吧
21ic专访
编辑视点
专题
会展
高端访谈
技术
通信技术
单片机
测试测量
智能硬件
汽车电子
消费电子
工业控制
医疗电子
开发板
物联网
模拟
电源
嵌入式
资讯
新品
应用
技术专访
基础知识
新基建
中国芯
互动
论坛
外包
博客
招聘
课程
公开课
在线研讨会
TI在线培训
资源
下载
电路图
Datasheet
在线计算器
厂商
21ic 官方微信
嵌入式微处理器
电源系统设计
手机21ic
本站介绍 | 申请友情链接 | 欢迎投稿 | 隐私声明 | 广告业务 | 网站地图 | 联系我们 | 诚聘英才
ICP许可证号:京ICP证070360号 21IC电子网 2000- 版权所有
京ICP备11013301号
京公网安备 11010802024343号
关闭
-1.5%����
1 0 obj
<>
endobj
2 0 obj
<>
endobj
3 0 obj
<>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 521.64 737.16] /Contents 5 0 R/Group<>/Tabs/S>>
endobj
4 0 obj
<>
endobj
5 0 obj
<>
stream
x��}M�e7r�^@��\� (�d� A@eVU�3,`�Y ���p�b���9'x�{-�R�T�݀U����wo��O��O�?�+ϻϧ��J��� ����7 ���u�����י��N^���rN?�.NX� ����O���=[�
�#��@����p��A����F@K@m�pHeo�h�* �T�v�y��up�u/���8S���qP�7�ns�qAc�Mj�D��G ���H�NE����dJ��1BL����)�"�>P��+��s�sLjn*�I�Ng���]
���pk<��Hz>�gQ������s� =�R}�&7�d�"���ID�]j'<�QL���3pR��h\�6:��1��z����E����n�1�<���#Q��J�����
#��2�}�DD�}"<�CC�N9O`b�hP����٨/���c����Դ�)�4h@�Ή�'�j����X+`hG���t
��*�R��b@��r�Ii���3@$�d�N\���Ժ ��4l=�H����4��Q��p��\q������3�")��*@xg�w2����^�\��&�C��^����NZ@��#&FUDi�%��`�Ic�WB�V(w� ː��0��"�L��i?�x~���y t����]&�f0ֵ�X��M+��AO��h�4L=���9�+�r����Aܞ������Q���I+hἆd@�L�6.j%�,�;^7�2c�� `�1@���:��pR�{���9O��_����Y5x p���"���2��j�/�0��Ph�f�N
�S��k3EsoDH�6iC q'�H9~Q���P� �ɢ�����F|<q�Ίɍ��@��` *���PT�@fg�M�&�z� ݡ| �\���<B�Q�&0N�z��a�-> ��� bY��W ��s��n˸%"���1�N� �z6�5���g�m�צ�vm�)���'�}�$D�� E:��fp��_d��6-^� H�F���v���qE�M]��̔@�c+�0�'�3�8e���,L�#�4��˔��/T�f�D� L5����6�]0�×� �����1 ��7�ٵ�}&�r"��텙��@opeh��$ Y�e�du 3sh�b�dV�I;)Q촒�rN��0�����E��d�7}{@�d���0~@t
c��������L$�Nd�4'艀Ȭ�8�Ó /#���_��u��VNl�y���u�;��NB� �cM���5�/!�Ъ�NMm�4�[5� �oy��#����Y���c�-���.ٰЦ&'L�����O���J�ɶ`e��Q��4���ao�)S�6�&'o��LbT�'��`��p{nqt@���̂\�e@���Sh����T�R8���`���N���88���U�/1����qr��lo.����^ f_�XgYO��On�+S�� s�YX=;/�u����[3����-Og�G�5�א.ͦ�ZJ��1\J{���!3 j���J�2����@����������:�B�ۛ�>�� �6���*��YY\)L��z*s[��t;��L�uʵ��R�dkn!�WM+"y���;��wmS�C"�Ĺ�������~�)�i�9[�i�\*��Y\��Ts��q �� �Zk)H����� �3�����ܔ@3Od�*�u��q^��դ*���G� o�Q�4��H©GLT9�Y����UJ����^�����U��AaU��o.1�HU�c�%F� V�y&���M��m�r��_�2���6S!�fE1 ij�{an�0��9'�2�X��O�
���Q����u�Gj
Q0N-�M�U�˄9]+�B�<��+� ]UO�3s�����&[���)�G�\/7,�.'�l'� q5�\��]��k�Vu�pn��@3�3Y#�ˀK���[�ebS�
�&lB�vg�����NB�B�9�b�t�OY_�2A2>�d�!��]W� QR��xP*0��"������̅kRV�� �����zp]����+qM!�{Y��<^���H��Я*����j,�q� �*7�(i����dL��p��`T���a��_5B5k�̢M S�* �(���G���Xk+�X ���7J�R�М�W��I]%�ęĖ�8.e-�ԪB595� 5e����Q�Q���v�|4��� =xܙr��t*�Gt�
\l�ْtW�HZQ�I���H�V� �R����j�TF�R�����.�Ve�Y&0@�lJ)S�����b �Ѥ��D1%'��\� ��⸡��U��Z��;�_��E[B��p�!J���*��]&QBY����(�o����K )�*��3N��2�jĊ�)S���m�*�l� ��SI�&�!~���4���XK(t���AM��й�1�.EPH[��{�!,u��ú�?P%���XTR�����t���wKKˁ�ng�hb�B�Hx*A�GpF<���~�.�o�S��6�T<���4l�� 3V��T�I`H�տ��D�-�K���4e�r2"ѩí�� :L5,�^2H�"�5qvY;ɴ�Q��&͔�m�c�V[�;��2�����<���c�5��2̬BU��j)@�4g��1�r�,Y�1��J�^/�a2�Ur��l�6������`�B��Km�!%t)���-�$���W�� �b��@���/q4�L���zU�����n�9W��R�%��ɇ�-��ԹT2z�^�7�FJ����������;_=����|��Im���t�"ml{g��Jeؙ��\�'0�`���&